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Mesoscopic phase separation dynamics of compressible copolymer melts
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In this paper we extend the dynamic mean-field density functional method, derived from the generalized
time-dependent Ginzburg-Landau theory, to the mesoscopic dynamixsrgdressiblgoolymer liquids. We
discuss and compare different classes of compressibility models: exactly incompressible, the Helfand’s har-
monic penalty model, and a cell model. We present numerical results and show that the penalty model is a very
practical and easy to use solution. In the curneMfT ensemble dynamics algorithms application of the cell
model leads to a variation of the pressure and, depending on conditions, the system develops liquid-gas
transitions. We show that the morphology of a phase separated diblock copolymer melt around a gas bubble
has intruiging structures, with lamellar phases oriented towards the gas-liquid interface.
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[. INTRODUCTION similar, but not identical, to the Flory-Orwoll-VrijfFOV)
A. General theory[12].

~ The dynamic mean-field density functional model pro-g gquations of state for polymer liquids and their application
vides a numerical method for the simulation of coarse-

grained morphology dynamics in polymer liquifs]. The _ )
theory is a modification of model R,3], i.e., a generalized A large number _of equations of _state are based on lattice
time-dependent Ginzburg-Landau theory for conserved orddP0dels[13]. The Simha-Somcynski theofjl4—16 can be
parameter. represented in terms of reduced/ T parameters, which is

In [2—7] and references cited therein, one can find numer€onvenient for parameter selectipti7,18. The lattice-fluid
ous examples of computer simulations of time-dependerﬁnOdEI of Sanchez and Lacombe and modifications thereoff
Ginzburg-Landau models for two-component incompressiblé19—21 accurately predict liquid-vapor transitions but they
liquids with linear transport coefficients and fourth-order d0 not seem suited for the liquid std@2,23. A big disad-
phenomenological expansion models for the free energy. (yantage of all lattice models is that they severely underesti-
general, the goal of mesoscopic polymer modeling is to obMate the pressuri@4]. .
tain a theory of coarse-grained ordering phenomena in poly- 1he FOV equation of statfl2,25-27 is a cell model,
mer liquids, based on a molecular description. We use a frefindamentally of the van der Waals type, in which the cohe-
energy functional, derived for a collection of GaussianSIVe interactions are independent of the excluded volume in-
chains in a mean-field environment. In this approach we m}e_ractlons. It is widely used in po'ym’?r applicatid®s,28.
to retain as much as possible of the underlying molecula ince the most frequently used equations of state for polymer
detail, i.e., the architecture and composition of the chai iquids seem to be derived either from the FOV cell model or

. . ttice models, we propose to use a slightly modified FOV
molecules are important parameters. To this end, we do ng . .

. . cell model for the numerical calculation of morphology dy-
use an expansion of the free energy in the order paramete

rﬁ . . .
: L amics in this paper.
as is commonly done in Ginzburg-Landau models, but rather A different class of models is based on integral equation

we use a single chain inverse density functional descriptio%pproaehegzg]. In the future the polymer reference interac-
for intrinsic chemical potentials. Previously, we studied thejjg site mode[30—37 may offer an accurateb initio cal-

random tern{8], the Gaussian chain density functioi@l,  cylation of compressibility effects in polymer liquids. How-
and the relation with fourth-order expansidd§]. Some re-  ever, integral equation theories have inherent serious
sults of numerical calculations of phase separatiomé@m-  jnconsistencies in the pressure calculatii#8. The numeri-
pressibleblock copolymer melts and concentrated surfactantal aspects are also cumbersome: solving the complex in-
solutions were discussed ] and[11], respectively. Fur- tegral equations together with our dynamic equations does
ther studies of kinetic coefficients and the relation with mi-not seem possible at present. In contrast, the simple modified
croscopic force-field models are in progress. FOV compressibility model that we propose here is not com-
In this paper our main objective is to considexisting putationally intensive and describes the most important
models for the compressibility of polymer liquids and espe-physical excluded volume effects reasonably accurate.
cially their application in the mesoscopic dynamics algo- Finally, in the polymer engineering world a number of
rithms. We discuss three models: exactly incompressiblegmpirical equations of state are also u$28,34, e.g., that
Helfand’s harmonic penalty model, and a cell model. In theof Spencer and Gilmoréan adapted van der Waals moxel
homogeneous equilibrium limit we find an equation of state/35] and the Tait equatiofsee, e.g.[22] and[34]). Empiri-

to dynamic density functional theory
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cal equations of state often yield very good appr0Ximati0ﬂS-|ere6:<s, is a Kroneckers function with value 1 if bead’ is
of eXpeI’imentabVT data[22] The disadvantage of empiri- of type | and 0 otherwise. The trace CTrS limited to the
cal equations iS, of course, that it is difficult to predict theintegration over the coordinates of one chain
parameters from physical models. The parameters involved
in the cell model and Helfand’s penalty function can be de- N
rived from experimental data which make the models very Trc(')=Nj N(')H dRs,
well fit for numerical calculations. Vet
_ We will show that in numerical applications it is some- xris a normalization constani is the single chain configu-
times more convenient to use a penalty function for highyaiion distribution function
densities than the proposed cell model. The penalty function
combines the effects of cohesive interactigmndich favor
clustering and excluded volume interactiorfghich favor
homogeneity. A harmonic penalty for density fluctuations
about the mean bulk density was used by Helfg®6] and  \whereHC is the Gaussian chain Hamiltonian
later by many otherge.qg.,[37]).

The paper is organized as follows. We briefly recall the 3 N
dynamic mean-field density functional method and discuss ,BHGZE Z (Rs—Rs_1)?, (4)
the connection with the cell model and Helfand’s harmonic =2
penalty function. We show how the various models affect thgyith a the Gaussian bond length parameter. The density
microphase separation dynamics and, in addition, present r¢;ctional is bijective; for every set of fieldd,} there is
sults of numerical calculations of microphase separation in @xactly one set of field§p,}. Thus there exists anique
compressible diblock copolymer melt, using the penalty and,erse density functiondll [ p]. There is no known closed
cell model. We compare the results with those obtained from, v tical expression for the inverse density functional, but
an earlier simulation of phase separation dynamics in an ingor o4 purpose it is sufficient that the inverse functional can
compressible system with similar composition. be calculated efficiently by numerical procedures.

We split the nonideal free energy functional formally into

1
= . e—ﬁ[HG+22':lUS(RS)]’ 3)

A. General

F"[p]=FTp]+Fp],
We shortly repeat the main part of the theory of the me-
soscopic dynamics algorithms. For more details[4deFor ~ whereF® contains the excluded volume interactions &fd
simplicity, we focus here on binary diblock copolymer melts; the cohesive interactions. The intrinsic chemical potentials
extensions to multicomponent copolymer mixtures arew, are defined by the functional derivatives of the free en-
trivial. We consider a melt of volum¥, containingn Gauss-  ergy
ian chains, each of lengtN=N,+Ng. There are two con-

centration fieldsp(r) and pg(r), two external potentials — oF ——Uu SF* 5_':e 5
. .. . . lu’l(r)_ I(r)+ + ’ ( )
Ua(r) and Ug(r), and two intrinsic chemical potentials opy(r) opi(r)  opy(r)
#a(r) and pg(r). . .
Imagine that on a course-grained time scale, there is a ==Uy(r)+py(r)+ pp(r). (6)

certain collective concentration fielgi(r) of the beads of . ) ]

type | (A or B). A bead is a statistical unit consisting of a Here we have introduced the cohesive potengigland the
fluctuating string of(usually 5 to 1% monomers[38,39. excluded volume potentigl}. For the cohesive interactions
Given this concentration field a free energy functionalwe employ a two-body mean-field potential

F[p] can be defined as follows:

F°[p]=%2 ffeu(Ir—r’I)m(r)pJ(r’)dr dr’, (7)
,8F[p]=—nInCI>+Inn!—,82l JU,(r)p|(r)dr 1

4 SF°¢
+BF™p]. M uin="5-=3 | antir=rhosar, @

Here @ is the partition functional for the ideal Gaussian where ¢ ;(|r—r'|)=€;([r—r'|) is a cohesive interaction

chains in the external field, , andF" p] is the contribu-  petween beads of tydeatr andJ atr’, defined by the same

tion from the nonideal interactions. The free energy func-Gaussian kernel as in the ideal Gaussian chain Hamiltonian
tional is derived from an optimization criteriufl] which

introduces the external potential as a Lagrange multiplier v 0
field. The external potentials and the concentration fields are eu([r=rh=ey
related via a density functional for ideal Gaussian chains

Existing (compressibility models that account for excluded

3/2
e—s/(zaz)(r—r’)z_ 9)

2ma’?

N volume interactions will be discussed in the next sections. In
p[U](r)=n 2 5|Ksrch¢5(f—Rsr)- 2) equil!brium M(r) is c_onstant; this yjelds the familiar self-
s'=1 consistent field equations for Gaussian chains, given a proper
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choice forF". When the system is not in equilibrium the Serves special attention. In our free energy functional for the
gradient of the intrinsic chemical potentialV u, acts as a Gaussian chains there is already an ideal gas contribution
thermodynamic force which drives collective relaxation pro-included, via the partition functional for the ideal chains in

cesses. When the Onsager coefficients are constant the stbe external field. In the van der Waals approximation we use

chastic diffusion equations are of the following form: here, the excluded volume effect can be cast in a correction
factorC, such thaQjiq,ig= C Qgas, WhereQ is the number of
ap, accessible states in an ideal liqui@,q) and the ideal
Ea V-3, (10 gaseous state;.J, respectively. Hence, the free energy for

the excluded volume interactions is the excess free energy of
J=—MVpu+J, (11)  the liquid over the gas, wittBF®=—InC=—miInc, where
m is the total number of beads ards the correction factor
where M is a mobility coefficient and] is a noise field, Or insertion probability for each bead separately. Here, we
distributed according to a fluctuation-dissipation theofein ~ have made explicit use of assumptién). Extending this
Nonlocal forms for the Onsager coefficients will be dis- definition to inhomogeneous liquids, and assuming that the
cussed in a future publication. insertion probability does not depend on concentration gra-
dients(making a first-order approximatiprwe find the free

B. Incompressible systems energy functional

In [1], we discusseihcompressiblesystems. In this spe-
cial limit there is an additional dynamic constraint which 'BFe[P]:_EI: fvp,(r)lnc(r)dr. (14)
conserves the total space packing in every point in space at
all times[40] The insertion probability is interpreted as taffectivefrac-
tion of free space. The lower the fraction of free space, the
D 1J,=0. (12) lower the insertion probability and the higher the excess free
[ energy. In principle we could use here any of the excess free
energy functions that have been proposed for lig{2%. As
Here, v, is the molecular volume of bedd Now the intrin-  we argued in the Introduction, tHenodified cell model(of
sic chemical potential is given by, =—U,+u;+X, where  the van der Waals typeis most widely used in polymer
the Lagrange multiplier field replacesu;]. Combining Egs. applications, it is not computationally demanding and of rea-
(10) and(12), and leaving out the noise, we obtain sonable accuracy. The simple Carnahan-Starling equation is
based on an integral equation approach and of very high
accuracy in the entire phase diagram. Therefore, we only

1
VA=— > uV[=U+ull.
|

2\ consider the following three simple models here:
Reinsertion of the expression f& in Eq. (10), shows that 1-f s van der Waals
the dynamics is governed by exchange thermodynamic c=1{ (1-f1%) cell model
forces only. In a binary mixture the forces are of the form e [f(4-30))/(1-1)? Carnahan-Starling.
—V(ua—ug)=—V(—Up+Ug+ uz—ug)- The corresponding excluded volume potentials are
The cohesive interaction parameters enter the dynamic equa- , o_ €
tions through the exchange parameger Bum=p Sp,
( f
X= § [ve ens™ VA €Ba— Va '€an V5 €apl. (13 —In(1—f )+ van der Waals
It must be realized, that in this limit the effective contribu- ={ —In(1—f33+ 72'_ cell model
tion from excluded volume interactions is a purely math- foo—f
ematical artifice. The constraining fieis obtained from a f(4—3f) 2(2—f) .
dynamic constraint, and not from an underlying microscopic (1-1)2 +1 (1-1)3 Carnahan-Starling.
interaction model. .
(15
C. A simple cell model The concentration variables are defined by
We make the following simplifying assumptions(i) co- 0.=
hesive and excluded volume interactions are local and inde- I=Nprs

pendent andii) do not depend on chain length. Assumption

(i) is the standard van der Waals approximation. The as- fzz 6,
sumptions ardvery) crude in the light of modern molecular !

theory [29], but we believe that for engineering purposes

they are sufficient. The derivation of the free energy is f=0p 2 p :2 i 9
straightforward. There is, however, a subtle effect which de- S I R
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FIG. 1. (8 Buf as a function of the packing fractioh with
v, = v for the van der Waals modél—), the cell mode(— — —),
and the Carnahan-Starling model— — — 9. (b) In c as a function
of the packing fractiorf with v,=wv for the van der Waals model
(—), the cell model(— — —), and the Carnahan-Starling model

(- ===

Here 6, is a relative concentration arfdis the total packing
fraction. There are a two interesting limiting behaviors.

(i) In Figs. Xa and Xb) we plottedBu; and the insertion
probability ¢ againstf for the three packing models. We
have sety,=v. Nearf=18u; diverges, and the insertion
probability drops to zero (Il —«), because it is impossible
to fill space over 100%. In the range of typical valued df
liquid mixtures f~0.4—0.7),uf is about 10-30 kT, and the
insertion probability is already very smdilh the cell model
and Carnahan-Starling mogleThe excluded volume effect

\Y%
BF[U=0]=BFg=—nn Xg+lnn! —nN Incg

1
+ > ,3% NN po; - (16)

The equation of state is given by

IF g _
poE—(W)T=p3’+p8+p8, (7

with separate contributions from the entropy of the ideal gas
of chain moleculeg3pl'=n/V, the cohesive interactions;

= %E,Jeﬁ,pmpoj, and the excluded volume interactions. For
the cell model we have

fé/?)
Bp8=m§ EI Pol -

Thus the pressure of the homogeneous system does not de-
pend on the sequence of the beads. If wevsety, as above,
thenfy=vX,pq =vnN/V and the equation of state simpli-
fies to

1 fo
_ = c

This equation of state is almost identical to the equation
obtained from the FOV mod¢ll2]

f
VBpFov:ﬁg +vBpg.

is thus verystrong in fact about as strong as the opposingThe difference with the FOV model can be explained as

cohesive energy interactiof33].
From Fig. 1b) it follows that the packing penalty in the

follows. By definition, the excluded volume free energy is an
excess free energy. Since in our approach we take the excess

van der Waals model is much too low, while in the liquid of ideal chain liquid over ideal chain gas, the equation of
range the cell model behaves similarly to the Carnahanstate correctly reduces to the ideal gas equation for low con-
Starling model. The best choice for the excluded volumecentration of chaing@p=n/V. In the FOV model the excess
potential in hard sphere liquids is the Carnahan-Starlings erroneously taken with respect to a gas of free beads, and

equation[29], but we believe that for polymer liquids this

for low concentration of chain8p=nN/V. This is the ideal

choice gives a false impression of accuracy. We must regas law for a system in which all beads would discon-
member that in the Gaussian spring model a single bead, #vected which is of course not correct. For practical purposes
statistical unit, represents a fluctuating string of monomersthe difference between the two models is small however; in
and these strings probably have a lower packing penalty thaifie ideal case €}=0) the maximal relative difference of
individual hard spheres. We will therefore concentrate on thépo/pProv—1)= fé""— 1 is found forN=cc. This amounts to

cell model in thedynamicssimulations.

ca. 16% for a typical liquid packing fraction ¢f=0.6.

(i) In a homogeneous equilibrium system the external For comparison we have plotted the pressure of the ho-

potential U is zero by definition, therefor&[U=0]=®
=V/A3, p[U=0]=py=nN,/V and the free energy func-
tional is given by

mogeneous liquid according to the van der Waals model, cell
model, FOV model, and Carnahan-Starling model in Fig. 2,
using »;=v, N—» ande’,=0
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2
8 20 . Ky
v p017,5 Fn'd[p]=F°'e>TP]+7 f (ZI V|p|—2| V|p0|) dr,
15 (18
123 where k, is a compressibility parameteE®® is the free
10 energy resulting from the cohesive interactions, which now
75 contains the exchange parameters only. The intrinsic chemi-
5 cal potential is now given by
2.5
==+ 3 | Aeulr=rhosrdr
-0.2 0 1 J \%
FIG. 2. vBpy as a function off, for the van der Waals model + Ky V|E vipy(r), (19
(—), the Flory-Orwoll-Vrij model (———), the cell model J
(= ===+, and the Camahan-Starling model - - - — - — > where we have omitted an unimportant constant term
(s Zyv3pos- IN ge_neral, a penalty function will alloyv smalll
0 density fluctuations around the mean bulk density. In this
van der Waals . ) .
(1—"19) approachky is a global constant, independent of composi-
fo i tion, that can be related to experimental values of isothermal
1= Flory-Orwoll-Vrij compressibility[37]. If the compressibility of the pure com-
vBPo= ¢ f4,3? ponents is very different, effective composition dependent
0 . cell model xy have to be introduced.
(1-13%)
fo(1+fo+f3—13) . Ill. COMPARISON OF DYNAMIC BEHAVIOR
3 Carnahan-Starling.
\ (1-"fo) A. Analytical results

As can be concluded from Fig. 2 the FOV model and the cell _The three dynamic models for the excluded volume
model differ little, while the Carnahan-Starling model pre- €ffécts (incompressible, cell model, and Helfand penklty
dicts a substantial larger pressure. We argued already that t&Ch involve the integration of highly coupled nonlinear

Carnahan-Starling model is probably not applicable to poly£guations. It is therefore not easy to see how the various
mer liquids. approximations affect the dynamic behavior. However, it is

illustrative to compare the consequences of the three models
for the stability of the packing fraction fielel Suppose that
in the block copolymer melt the molecular volumes of the

The application of the cell model in the current algorithmstwo species are the same. We replace the interaction kernels
for the dynamics simulation leads to a special problem. Eacle;(|r—r’|) by & functions /;8(r—r’) (local interactions
system possesses an optimum equilibrium space packing wnly). Furthermore, we assume that the cohesive energy pa-
which it will try to settle locally during the simulations. Due rameters for the individual components are also the same,
to the conservative set of equations, the total amount of mayith BEgAV—lzlgegByﬂ:e, and a weak difference be-
teria}I is presgrved. Sinc_e the volume is constant, the MeSOgyeenA andB Bedgr t=Bes v t=e+ . Typically, e is
copic dynamics model simulates BV T ensemble, in which  petween— 10 and— 50, while y~0O(1). Wedefine the local
the pressure varies. Hence, if the initial volume fraction isgrger parameter by
chosen too low the system develops a liquid-gas phase tran-
sition, with gas bubbles and condensed phases dispersed T=0p— 05
throughout the systeniFig. 8). In an npT ensemble, the
system volume will adjust to compensate for changes inlhe dynamics equatiortd0) for each of the two components
pressure. A andB can be rewritten to a dynamics equation foand a

We could add a pressure coupling to the dynamics algodynamics equation fof. In Fourier space the equations are
rithms, similar to the pressure coupling algorithms developeds follows (neglecting the noise in order to simplify the
for molecular dynamics simulations, but this will increaseanalysig:
the complexity of the algorithms and will be postponed to a
future publication. Here, we consider as an alternative a very ﬂ = —DgYAU,— x7g]
simple but practical solution, which resolves the problem at 4~ XTal:
albeit at the cost of further approximations. The idea is origi-
nally from Helfand[36]. The ansatz is that in a liquid mix- 0 incompressible
ture the density fluctuations are small and harmonic, so that
for the purpose of calculating phase separation the bare coéfq_ —DqZ{Z Uq+(2Kg+X)fq} penalty
hesive energy interactioreg; may effectively be replaced by gt
exchange interactiond,; (with Ae;;=0 andAe¢;.,=0).
The Helfand free energy is similar to _DQZ{E Uq+z M§+2 '“S

D. Helfand’s penalty function

cell model.
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FIG. 3. kcm as a function offy for e=—10 (—), e=—30
(———),ande=—-50 (- — — — 9.

with D=Mv/B, AUy=—B(Upq—Ugg), ZUg=—B(Uxq
+Usgg), E,u'qZ,B(,u:Aq-i— ,LLIBq), and «{,=Bvky . In all three
models, the driving force for microphase separation is gen-
erated byAU — y 7. In Helfand’'s penalty model the pack-
ing fractionf may change, depending on the parameters. In a
typical situation2U~O(1/N), so that the penalty function

in the evolution equation fof dominates, provided,;> 1.

In this case the total packing fraction has an ideal diffusive
behavior

of
(—t“) ~—g%2«{,Df,

Penalty

and henceany inhomogeneity in the total packing fraction,
whether negative or positive, will diffuse rapidly back to
homogenous packing state with diffusion constarf,R.

In the cell model this is slightly more complicated. The
time evolution for the order parameter in the cell model is
the same as in the penalty and incompressible models. How-
ever, in this case packing inhomogeneities can arise sponta-
neously, as we already remarked earlier. For small deviations

821

from homogeneity we can approximate

065

W os0 |

055

0.50 - - -
0.0 500.0 1000.0 1500.0 2000.0

T

FIG. 4. Time evolution of volume-averaged order parameter
as a function ofr in an AgBg block copolymer melt for the incom-
pressible mode{—) and the Helfand penalty model witky,=10
(—). The quench fromy=0 to y=1 is at7=50.

FIG. 5. Morphology of anAgBg block copolymer melt atr
= 1500 according to the penalty model wity = 10. The melt was
guenched at-=50 from y=0 to y=1. (a) m, values range from
—0.94—0.94(black to whitg. (b) f, values range from 0.96-1.04
(black to white.

D ne+ 2 ug=(rcut g,

4-3f33
Kcm=— €+ mw@ (20

In Fig. 3 k¢ is plotted against,, for various values of the
cohesive interaction parameterClearly, if the initial pack-

ing fraction is low and/or the cohesive energy parameter is
strongly negativexcy is negativeand this implies that an
inhomogeneity in the total packing fraction will grow spon-
taneously(depending on the precise value fBiJ,~ 1/N):

the system then develops regions with low and high con-
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FIG. 6. Time evolution of volume-averaged order parameter
as a function ofr in an AgBg block copolymer melt for the cell
model at different volume fractionsAj f=0.7 (—) quenched at
=50, B) f=0.5 (— - - -9 quenched atr=50, and ()
f=0.5 (— — —) not quenched.

densed phases. k¢, is weakly positive a phase transition is
still possible, leading to nucleation phenomena in the binodal
regime[see, e.g., Fig. @]. If we select the conditions such
that k> 1 the cell model reduces to a penalty model with
non constant but positive penalty coefficient.

Notice that in the above analysis we have assumed an
nVT ensemble, and thus the pressure is allowed to vary.
When the pressure is kept constant, the microphase separa
tion dynamics in the cell model can be considerably different
from the penalty or incompressible model. A precise analysis
of the stability conditions in the cell model including pres-
sure effects is quite involved and will be postponed to a
future publication.

B. Numerical results

We performed a number of numerical simulations, using
the various excluded volume interaction models. To make a
comparison with previous simulation resufts], we have FIG. 7. [lllustration of simulation A)]. Morphology of an
used the same linear mobility coefficigmthich differs from  AgBg copolymer melt atr= 1500 according to the cell model. The
the approximation in Eq(10)] JIZ_MPIVMI+3|, and interaction parameters are explained in the text. The melt was
studied the microphase separation dynamics ifgBg co-  dquenched ar=50 from y=0 to y=1. (8 m, values range from
polymer melt. The initial system is always homogeneous._0-65_0-69.(b|a0k to whitg. (b) f, values range from 0.66—0.76
Numerically, after discretizing the dynamic equations on ablack to white.
grid [cf. Eqg. (10)], we have the following Crank-Nicolson

equations for each componeint D, is the discretized diffusion operator in grid directian

and uq is evaluated at grid positiog. o is the Crank-

o - wA TS =0+ (1— w) ATz + 7l Nicolson parameter antiz is a scaled time step. The Crank-
Nicolson equations are solved iteratively at every time step

is the noise which is distributed according to a using a steepest descent method. We define an average mea-

Here, 7 )
sure of the order in the system by

fluctuation-dissipation theorefi8]. Notice that the noise is
applied at every time ste[zf denotes the discretized diffu-

1 1
sion part at time levek and (cubic) grid positionr w=y f (63+ 63)dr= >V f (f2+ 7%)dr.
\ \%

w captures the effects of a change in order due to microphase
separation and/or total density fluctuations. In Fig. 4 we plot-

ZrZE % da[Danga]rq:Blu’lq'
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FIG. 8. [lllustration of simulation B)]. Morphology of anAgBg copolymer melt atr=1500 according to the cell model. Interaction
parameters are explained in the text. The melt was quenched %0 from y=0 to y=1. (a) 7, values range from-0.62—0.62(black to
white). (b) f, values range from 0.0—0.66lack to whitg. (c) Isosurface representation Bfy+Ug=0, values range from-0.61—1.54.

ted the time evolution o#v in a simulation using the incom- More interesting effects are observed in simulations using
pressible modelall parameters as irl]) and Helfand's pen- the cell model. In Fig. 6 the time evolution of the average
alty model («;,=10). The phase separation was initiatedorder parameter |s pIotted for three different simulations. In
with a quench fromX 0 to X= 1.0 at 7=50. F|gure 4 the three Caseﬁe”v __20 0 |n|t|a”y, in simulationsA
clearly shows that the models have the same dynamic pednd B the interactions are quenched t?ngBV !
formance (the penalty model was followed over a longer = Begav 1=—18.57 and Beagr '=Bepv 1=—18.0,
period of time for stability tesjs Notice that in the incom- respectively, atr=50. The initial volume fractions aré,
pressible model, the numerical errors effectively allow den—=0.7 (A) andf,=0.5 (B andC). The quenched interaction
sity fluctuations of the same order as in the penalty model. Iivalues correspond tgfd,5=0.5 effectively, as in the incom-
the interfacial regions the packing fraction has a dip of a fewpressible system. In simulatiol©C the system isnot
percenfillustrated in Figs. &) and 8b)], which was absent quenched.

in the incompressible model simulations. The depth of the Figure 6 clearly shows a fast increase of the order param-
dip strongly depends on the compressibility parameter; theter after the quench at=50 for simulationsA and B; a
larger xy , the smaller the dip. sign of microphase separation. In c&s¢he order parameter
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FIG. 10. Isosurface representationfef 0.6 at7=1500 in simu-
lation B. (See Fig. 8 for parameteysThe gas bubbles are clearly
visible.

fraction at 7=1500 for the two simulations. In comparing
figures(a) and(b) we see that the black regions ifby and
8(b) indicate density dips at domain interfaces. The interface
effects are much less in the cell model simulations than in
the penalty model simulations. Notice that the effective
kcm=25.0 and is, hence, much higher in the cell model
simulations than in the penalty model simulations. The maxi-
mum packing fraction is increased with respect to the initial
packing fraction in simulation®d and C because of the
nucleation phenomena.

From Figs. 8a), 8(c), and 10 we conclude that the mi-
crophase separated domains have an orientétioardsthe
gas-liquid interface, rather than an adjacent or parallel orien-
tation. We will further investigate this orientation in future
simulations.

FIG. 9. [lllustration of simulation C)]. Morphology of an
AgBg copolymer melt atr=1500 according to the cell model. In- IV. CONCLUSION
teraction parameters are explained in the text. The melt was not

quenched, the excluded volume effects cause gas bubble nucleation. In this .pia_per we have exammed th_e effepts of different
(a) m, values range from-0.06—0.06 black to whits. (b) f, values compressibility models on numerical simulations of copoly-

: mer melts using the dynamic mean-field density functional
range from 0.0-0.68black to whit. method. Our results clearly show that a cell mo@emodi-
fication of the FOV modegl can be used, which exhibits
does not increase smoothly; the inflection points corresponghysical excluded volume effectglensity dips at domain
to gas bubble nucleation. The increase of the order parametatterface$. The usage of the cell model also causes gas
in caseC is not due to microphase separation, but is a resulbubble nucleation at low initial packing fractions mvT
of gas bubble development in the binodal regimesimulations. This effect will not be present impT simula-
(kcm=0.13[see Eq(20)] in both simulationd8 andC), due tions, where the system will adapt its volume to pressure
to the excluded volume effects at low packing fraction. changes. The resulting morphologies show intriguing struc-
Figures Ta)—9(a) are illustrations of the different mor- tures, with lamellar phases oriented towards the gas-liquid
phologies atr=1500 for the three simulations. Because theinterface. The interface effects are even more clear if the
system can not adapt its volume to pressure changes, gabenomenological penalty model is used, which is math-
bubbles develop if the initial packing fraction is too low ematically and numerically very simple and shows no gas-
[Figs. §a) and 9a)]. Figures Th) and 8b) show the packing liquid transitions.
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