
stry,

PHYSICAL REVIEW E JULY 1997VOLUME 56, NUMBER 1
Mesoscopic phase separation dynamics of compressible copolymer melts

N. M. Maurits, B. A. C. van Vlimmeren, and J. G. E. M. Fraaije
Groningen Biomolecular Sciences and Biotechnology Institute, Bioson Research Institute, Department of Biophysical Chemi

University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
~Received 31 October 1996!

In this paper we extend the dynamic mean-field density functional method, derived from the generalized
time-dependent Ginzburg-Landau theory, to the mesoscopic dynamics ofcompressiblepolymer liquids. We
discuss and compare different classes of compressibility models: exactly incompressible, the Helfand’s har-
monic penalty model, and a cell model. We present numerical results and show that the penalty model is a very
practical and easy to use solution. In the currentnVT ensemble dynamics algorithms application of the cell
model leads to a variation of the pressure and, depending on conditions, the system develops liquid-gas
transitions. We show that the morphology of a phase separated diblock copolymer melt around a gas bubble
has intruiging structures, with lamellar phases oriented towards the gas-liquid interface.
@S1063-651X~97!12707-6#

PACS number~s!: 61.25.Hq, 64.60.My, 64.30.1t, 64.70.Ja
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I. INTRODUCTION

A. General

The dynamic mean-field density functional model pr
vides a numerical method for the simulation of coar
grained morphology dynamics in polymer liquids@1#. The
theory is a modification of model B@2,3#, i.e., a generalized
time-dependent Ginzburg-Landau theory for conserved o
parameter.

In @2–7# and references cited therein, one can find num
ous examples of computer simulations of time-depend
Ginzburg-Landau models for two-component incompress
liquids with linear transport coefficients and fourth-ord
phenomenological expansion models for the free energy
general, the goal of mesoscopic polymer modeling is to
tain a theory of coarse-grained ordering phenomena in p
mer liquids, based on a molecular description. We use a
energy functional, derived for a collection of Gaussi
chains in a mean-field environment. In this approach we
to retain as much as possible of the underlying molecu
detail, i.e., the architecture and composition of the ch
molecules are important parameters. To this end, we do
use an expansion of the free energy in the order parame
as is commonly done in Ginzburg-Landau models, but rat
we use a single chain inverse density functional descrip
for intrinsic chemical potentials. Previously, we studied t
random term@8#, the Gaussian chain density functional@9#,
and the relation with fourth-order expansions@10#. Some re-
sults of numerical calculations of phase separation inincom-
pressibleblock copolymer melts and concentrated surfact
solutions were discussed in@1# and @11#, respectively. Fur-
ther studies of kinetic coefficients and the relation with m
croscopic force-field models are in progress.

In this paper our main objective is to considerexisting
models for the compressibility of polymer liquids and esp
cially their application in the mesoscopic dynamics alg
rithms. We discuss three models: exactly incompressi
Helfand’s harmonic penalty model, and a cell model. In
homogeneous equilibrium limit we find an equation of st
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similar, but not identical, to the Flory-Orwoll-Vrij~FOV!
theory @12#.

B. Equations of state for polymer liquids and their application
to dynamic density functional theory

A large number of equations of state are based on lat
models@13#. The Simha-Somcynski theory@14–16# can be
represented in terms of reducedpVT parameters, which is
convenient for parameter selection@17,18#. The lattice-fluid
model of Sanchez and Lacombe and modifications ther
@19–21# accurately predict liquid-vapor transitions but the
do not seem suited for the liquid state@22,23#. A big disad-
vantage of all lattice models is that they severely undere
mate the pressure@24#.

The FOV equation of state@12,25–27# is a cell model,
fundamentally of the van der Waals type, in which the coh
sive interactions are independent of the excluded volume
teractions. It is widely used in polymer applications@23,28#.
Since the most frequently used equations of state for poly
liquids seem to be derived either from the FOV cell model
lattice models, we propose to use a slightly modified FO
cell model for the numerical calculation of morphology d
namics in this paper.

A different class of models is based on integral equat
approaches@29#. In the future the polymer reference intera
tion site model@30–32# may offer an accurateab initio cal-
culation of compressibility effects in polymer liquids. How
ever, integral equation theories have inherent seri
inconsistencies in the pressure calculations@29#. The numeri-
cal aspects are also cumbersome: solving the complex
tegral equations together with our dynamic equations d
not seem possible at present. In contrast, the simple mod
FOV compressibility model that we propose here is not co
putationally intensive and describes the most import
physical excluded volume effects reasonably accurate.

Finally, in the polymer engineering world a number
empirical equations of state are also used@33,34#, e.g., that
of Spencer and Gilmore~an adapted van der Waals mode!
@35# and the Tait equation~see, e.g.,@22# and@34#!. Empiri-
816 © 1997 The American Physical Society
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56 817MESOSCOPIC PHASE SEPARATION DYNAMICS OF . . .
cal equations of state often yield very good approximatio
of experimentalpVT data@22#. The disadvantage of empiri
cal equations is, of course, that it is difficult to predict t
parameters from physical models. The parameters invo
in the cell model and Helfand’s penalty function can be d
rived from experimental data which make the models v
well fit for numerical calculations.

We will show that in numerical applications it is som
times more convenient to use a penalty function for h
densities than the proposed cell model. The penalty func
combines the effects of cohesive interactions~which favor
clustering! and excluded volume interactions~which favor
homogeneity!. A harmonic penalty for density fluctuation
about the mean bulk density was used by Helfand@36# and
later by many others~e.g.,@37#!.

The paper is organized as follows. We briefly recall t
dynamic mean-field density functional method and disc
the connection with the cell model and Helfand’s harmo
penalty function. We show how the various models affect
microphase separation dynamics and, in addition, presen
sults of numerical calculations of microphase separation
compressible diblock copolymer melt, using the penalty a
cell model. We compare the results with those obtained fr
an earlier simulation of phase separation dynamics in an
compressible system with similar composition.

II. THEORY

A. General

We shortly repeat the main part of the theory of the m
soscopic dynamics algorithms. For more details see@1#. For
simplicity, we focus here on binary diblock copolymer mel
extensions to multicomponent copolymer mixtures
trivial. We consider a melt of volumeV, containingn Gauss-
ian chains, each of lengthN5NA1NB . There are two con-
centration fieldsrA(r ) and rB(r ), two external potentials
UA(r ) and UB(r ), and two intrinsic chemical potential
mA(r ) andmB(r ).

Imagine that on a course-grained time scale, there
certain collective concentration fieldr I(r ) of the beads of
type I ~A or B!. A bead is a statistical unit consisting of
fluctuating string of~usually 5 to 15! monomers@38,39#.
Given this concentration field a free energy function
F@r# can be defined as follows:

bF@r#52n lnF1 lnn!2b(
I
E UI~r !r I~r !dr

1bFnid@r#. ~1!

Here F is the partition functional for the ideal Gaussia
chains in the external fieldUI , andF

nid@r# is the contribu-
tion from the nonideal interactions. The free energy fun
tional is derived from an optimization criterium@1# which
introduces the external potential as a Lagrange multip
field. The external potentials and the concentration fields
related via a density functional for ideal Gaussian chains

r I@U#~r !5n (
s851

N

d Is8
K Trccd~r2Rs8!. ~2!
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Hered Is8
K is a Kroneckerd function with value 1 if beads8 is

of type I and 0 otherwise. The trace Trc is limited to the
integration over the coordinates of one chain

Trc~• !5NE
VN

~• !)
s51

N

dRs ,

N is a normalization constant.c is the single chain configu
ration distribution function

c5
1

F
e2b@HG1(s51

N Us~Rs!#, ~3!

whereHG is the Gaussian chain Hamiltonian

bHG5
3

2a2 (
s52

N

~Rs2Rs21!
2, ~4!

with a the Gaussian bond length parameter. The den
functional is bijective; for every set of fields$UI% there is
exactly one set of fields$r I%. Thus there exists aunique
inverse density functionalUI@r#. There is no known closed
analytical expression for the inverse density functional,
for our purpose it is sufficient that the inverse functional c
be calculated efficiently by numerical procedures.

We split the nonideal free energy functional formally in
two parts

Fnid@r#5Fc@r#1Fe@r#,

whereFe contains the excluded volume interactions andFc

the cohesive interactions. The intrinsic chemical potent
m I are defined by the functional derivatives of the free e
ergy

m I~r ![
dF

dr I~r !
52UI~r !1

dFc

dr I~r !
1

dFe

dr I~r !
, ~5!

52UI~r !1m I
c~r !1m I

e~r !. ~6!

Here we have introduced the cohesive potentialm I
c and the

excluded volume potentialm I
e . For the cohesive interaction

we employ a two-body mean-field potential

Fc@r#5
1

2 (
IJ

E E e IJ~ ur2r 8u!r I~r !rJ~r 8!dr dr 8, ~7!

m I
c~r ![

dFc

dr I
5(

J
E
V
e IJ~ ur2r 8u!rJ~r 8!dr 8, ~8!

where e IJ(ur2r 8u)5eJI(ur2r 8u) is a cohesive interaction
between beads of typeI at r andJ at r 8, defined by the same
Gaussian kernel as in the ideal Gaussian chain Hamilton

e IJ~ ur2r 8u![e IJ
0 S 3

2pa2D
3/2

e23/~2a2!~r2r8!2. ~9!

Existing ~compressibility! models that account for exclude
volume interactions will be discussed in the next sections
equilibrium m I(r ) is constant; this yields the familiar self
consistent field equations for Gaussian chains, given a pro
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818 56MAURITS, van VLIMMEREN, AND FRAAIJE
choice forFnid. When the system is not in equilibrium th
gradient of the intrinsic chemical potential2“m I acts as a
thermodynamic force which drives collective relaxation p
cesses. When the Onsager coefficients are constant the
chastic diffusion equations are of the following form:

]r I
]t

52“•JI , ~10!

JI52M“m I1 J̃I , ~11!

whereM is a mobility coefficient andJ̃I is a noise field,
distributed according to a fluctuation-dissipation theorem@8#.
Nonlocal forms for the Onsager coefficients will be d
cussed in a future publication.

B. Incompressible systems

In @1#, we discussedincompressiblesystems. In this spe
cial limit there is an additional dynamic constraint whic
conserves the total space packing in every point in spac
all times @40#

(
I

n IJI50. ~12!

Here,n I is the molecular volume of beadI . Now the intrin-
sic chemical potential is given bym I52UI1m I

c1l, where
the Lagrange multiplier fieldl replacesm I

e . Combining Eqs.
~10! and ~12!, and leaving out the noise, we obtain

“l52
1

( In I
(
I

n I“@2UI1m I
c#.

Reinsertion of the expression for“l in Eq. ~10!, shows that
the dynamics is governed by exchange thermodyna
forces only. In a binary mixture the forces are of the form

2“~mA2mB!52“~2UA1UB1mA
c2mB

c !.

The cohesive interaction parameters enter the dynamic e
tions through the exchange parameterx

x[
b

2
@nB

21eAB
0 1nA

21eBA
0 2nA

21eAA
0 2nB

21eBB
0 #. ~13!

It must be realized, that in this limit the effective contrib
tion from excluded volume interactions is a purely ma
ematical artifice. The constraining fieldl is obtained from a
dynamic constraint, and not from an underlying microsco
interaction model.

C. A simple cell model

We make the following simplifying assumptions:~i! co-
hesive and excluded volume interactions are local and in
pendent and~ii ! do not depend on chain length. Assumpti
~i! is the standard van der Waals approximation. The
sumptions are~very! crude in the light of modern molecula
theory @29#, but we believe that for engineering purpos
they are sufficient. The derivation of the free energy
straightforward. There is, however, a subtle effect which
-
to-
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serves special attention. In our free energy functional for
Gaussian chains there is already an ideal gas contribu
included, via the partition functional for the ideal chains
the external field. In the van der Waals approximation we
here, the excluded volume effect can be cast in a correc
factorC, such thatQliquid5CQgas, whereQ is the number of
accessible states in an ideal liquid (Qliquid) and the ideal
gaseous state (Qgas), respectively. Hence, the free energy f
the excluded volume interactions is the excess free energ
the liquid over the gas, withbFe52 lnC52m lnc, where
m is the total number of beads andc is the correction factor
or insertion probability for each bead separately. Here,
have made explicit use of assumption~ii !. Extending this
definition to inhomogeneous liquids, and assuming that
insertion probability does not depend on concentration g
dients~making a first-order approximation!, we find the free
energy functional

bFe@r#52(
I
E
V
r I~r !lnc~r !dr . ~14!

The insertion probability is interpreted as theeffectivefrac-
tion of free space. The lower the fraction of free space,
lower the insertion probability and the higher the excess f
energy. In principle we could use here any of the excess
energy functions that have been proposed for liquids@29#. As
we argued in the Introduction, the~modified! cell model~of
the van der Waals type! is most widely used in polyme
applications, it is not computationally demanding and of re
sonable accuracy. The simple Carnahan-Starling equatio
based on an integral equation approach and of very h
accuracy in the entire phase diagram. Therefore, we o
consider the following three simple models here:

c5H 12 f
~12 f 1/3!3

e2@ f ~423 f !#/~12 f !2

van der Waals
cell model
Carnahan-Starling.

The corresponding excluded volume potentials are

bm I
e[b

dFe

dr I

55
2 ln~12 f !1

f I
12 f

van der Waals

2ln~12 f 1/3!31
f I

f 2/32 f
cell model

f ~423 f !

~12 f !2
1 f I

2~22 f !

~12 f !3
Carnahan-Starling.

~15!

The concentration variables are defined by

u I[n Ir I ,

f[(
I

u I ,

f I[n I(
J

rJ5(
J

n I
nJ

uJ .
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Hereu I is a relative concentration andf is the total packing
fraction. There are a two interesting limiting behaviors.

~i! In Figs. 1~a! and 1~b! we plottedbm I
e and the insertion

probability c against f for the three packing models. W
have setn I5n. Near f51bm I

e diverges, and the insertio
probability drops to zero (lnc→2`), because it is impossible
to fill space over 100%. In the range of typical values off in
liquid mixtures (f'0.4–0.7),m I

c is about 10–30 kT, and the
insertion probability is already very small~in the cell model
and Carnahan-Starling model!. The excluded volume effec
is thus verystrong, in fact about as strong as the opposi
cohesive energy interactions@33#.

From Fig. 1~b! it follows that the packing penalty in th
van der Waals model is much too low, while in the liqu
range the cell model behaves similarly to the Carnah
Starling model. The best choice for the excluded volu
potential in hard sphere liquids is the Carnahan-Star
equation@29#, but we believe that for polymer liquids thi
choice gives a false impression of accuracy. We must
member that in the Gaussian spring model a single bead
statistical unit, represents a fluctuating string of monom
and these strings probably have a lower packing penalty
individual hard spheres. We will therefore concentrate on
cell model in thedynamicssimulations.

~ii ! In a homogeneous equilibrium system the exter
potentialU is zero by definition, thereforeF@U50#5F0
5V/L3, r I@U50#5r0I5nNI /V and the free energy func
tional is given by

FIG. 1. ~a! bm I
e as a function of the packing fractionf with

n I5n for the van der Waals model~—!, the cell model~———!,
and the Carnahan-Starling model~– – – – –!. ~b! ln c as a function
of the packing fractionf with n I5n for the van der Waals mode
~—!, the cell model~———!, and the Carnahan-Starling mod
~– – – – –!.
-
e
g

e-
or
s,
an
e

l

bF@U50#5bF052n ln
V

L3 1 lnn!2nN lnc0

1
1

2
b(

IJ
e IJ
0 nNIr0J . ~16!

The equation of state is given by

p0[2S ]F0

]V D
T

5p0
id1p0

e1p0
c , ~17!

with separate contributions from the entropy of the ideal g
of chain moleculesbp0

id5n/V, the cohesive interactionsp0
c

5 1
2( IJe IJ

0 r0Ir0J , and the excluded volume interactions. F
the cell model we have

bp0
e5

f 0
1/3

~12 f 0
1/3! (

I
r0I .

Thus the pressure of the homogeneous system does no
pend on the sequence of the beads. If we setn I5n, as above,
then f 05n( Ir0I5nnN/V and the equation of state simpl
fies to

nbp05
1

N
f 01

f 0
4/3

~12 f 0
1/3!

1nbp0
c .

This equation of state is almost identical to the equat
obtained from the FOV model@12#

nbpFOV5
f 0

~12 f 0
1/3!

1nbp0
c .

The difference with the FOV model can be explained
follows. By definition, the excluded volume free energy is
excess free energy. Since in our approach we take the ex
of ideal chain liquid over ideal chain gas, the equation
state correctly reduces to the ideal gas equation for low c
centration of chains,bp5n/V. In the FOV model the exces
is erroneously taken with respect to a gas of free beads,
for low concentration of chainsbp5nN/V. This is the ideal
gas law for a system in which all beads would bediscon-
nected, which is of course not correct. For practical purpos
the difference between the two models is small however
the ideal case (e IJ

0 50) the maximal relative difference o
(p0 /pFOV21)5 f 0

1/321 is found forN5`. This amounts to
ca. 16% for a typical liquid packing fraction off 050.6.

For comparison we have plotted the pressure of the
mogeneous liquid according to the van der Waals model,
model, FOV model, and Carnahan-Starling model in Fig.
usingn I5n, N→` ande IJ

0 50
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nbp055
f 0

~12 f 0!
van der Waals

f 0
~12 f 0

1/3!
Flory-Orwoll-Vrij

f 0
4/3

~12 f 0
1/3!

cell model

f 0~11 f 01 f 0
22 f 0

3!

~12 f 0!
3 Carnahan-Starling.

As can be concluded from Fig. 2 the FOV model and the c
model differ little, while the Carnahan-Starling model pr
dicts a substantial larger pressure. We argued already tha
Carnahan-Starling model is probably not applicable to po
mer liquids.

D. Helfand’s penalty function

The application of the cell model in the current algorithm
for the dynamics simulation leads to a special problem. E
system possesses an optimum equilibrium space packin
which it will try to settle locally during the simulations. Du
to the conservative set of equations, the total amount of
terial is preserved. Since the volume is constant, the me
copic dynamics model simulates annVT ensemble, in which
the pressure varies. Hence, if the initial volume fraction
chosen too low the system develops a liquid-gas phase
sition, with gas bubbles and condensed phases dispe
throughout the system~Fig. 8!. In an npT ensemble, the
system volume will adjust to compensate for changes
pressure.

We could add a pressure coupling to the dynamics a
rithms, similar to the pressure coupling algorithms develop
for molecular dynamics simulations, but this will increa
the complexity of the algorithms and will be postponed to
future publication. Here, we consider as an alternative a v
simple but practical solution, which resolves the proble
albeit at the cost of further approximations. The idea is or
nally from Helfand@36#. The ansatz is that in a liquid mix
ture the density fluctuations are small and harmonic, so
for the purpose of calculating phase separation the bare
hesive energy interactionse IJ may effectively be replaced b
exchange interactionsDe IJ ~with De II50 andDe IJÞI>0!.
The Helfand free energy is similar to

FIG. 2. nbp0 as a function off 0 for the van der Waals mode
~ —!, the Flory-Orwoll-Vrij model ~———!, the cell model
~– – – – –!, and the Carnahan-Starling model~– – – – – – – –!.
ll

the
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Fnid@r#5Fc,ex@r#1
kH

2 E S (
I

n Ir I2(
I

n Ir0I D 2dr ,
~18!

where kH is a compressibility parameter.Fc,ex is the free
energy resulting from the cohesive interactions, which n
contains the exchange parameters only. The intrinsic che
cal potential is now given by

m I~r !52UI~r !1(
J
E
V
De IJ~ ur2r 8u!rJ~r 8!dr 8

1kHn I(
J

nJrJ~r !, ~19!

where we have omitted an unimportant constant te
(JnJr0J . In general, a penalty function will allow sma
density fluctuations around the mean bulk density. In t
approach,kH is a global constant, independent of compo
tion, that can be related to experimental values of isother
compressibility@37#. If the compressibility of the pure com
ponents is very different, effective composition depend
kH have to be introduced.

III. COMPARISON OF DYNAMIC BEHAVIOR

A. Analytical results

The three dynamic models for the excluded volum
effects ~incompressible, cell model, and Helfand penal!
each involve the integration of highly coupled nonline
equations. It is therefore not easy to see how the vari
approximations affect the dynamic behavior. However, it
illustrative to compare the consequences of the three mo
for the stability of the packing fraction fieldf . Suppose that
in the block copolymer melt the molecular volumes of t
two species are the same. We replace the interaction ker
e IJ(ur2r 8u) by d functions e IJ

0 d(r2r 8) ~local interactions
only!. Furthermore, we assume that the cohesive energy
rameters for the individual components are also the sa
with beAA

0 n215beBB
0 n215e, and a weak difference be

tweenA andB beAB
0 n215beBA

0 n215e1x. Typically, e is
between210 and250, whilex'O(1). Wedefine the local
order parameter by

p[uA2uB .

The dynamics equations~10! for each of the two component
A andB can be rewritten to a dynamics equation forp and a
dynamics equation forf . In Fourier space the equations a
as follows ~neglecting the noise in order to simplify th
analysis!:

]pq

]t
52Dq2@DUq2xpq#,

] f q
]t

55
0 incompressible

2Dq2F( Uq1~2kH8 1x! f qG penalty

2Dq2F( Uq1( mq
c1( mq

eG cell model.
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56 821MESOSCOPIC PHASE SEPARATION DYNAMICS OF . . .
with D5Mn/b, DUq52b(UAq2UBq), (Uq52b(UAq

1UBq), (mq
i 5b(mAq

i 1mBq
i ), andkH8 5bnkH . In all three

models, the driving force for microphase separation is g
erated byDU2xpq . In Helfand’s penalty model the pack
ing fraction f may change, depending on the parameters.
typical situation(U'O(1/N), so that the penalty function
in the evolution equation forf dominates, providedkH8 @1.
In this case the total packing fraction has an ideal diffus
behavior

S ] f q
]t D

Penalty

'2q22kH8Df q

and henceany inhomogeneity in the total packing fraction
whether negative or positive, will diffuse rapidly back
homogenous packing state with diffusion constant 2kH8D.

In the cell model this is slightly more complicated. Th
time evolution for the order parameter in the cell model
the same as in the penalty and incompressible models. H
ever, in this case packing inhomogeneities can arise spo
neously, as we already remarked earlier. For small deviat
from homogeneity we can approximate

FIG. 3. kCM as a function off 0 for e5210 ~ —!, e5230
~———!, ande5250 ~– – – – –!.

FIG. 4. Time evolution of volume-averaged order parametew
as a function oft in anA8B8 block copolymer melt for the incom
pressible model~—! and the Helfand penalty model withkH8 510
~¥!. The quench fromx50 to x51 is att550.
-

a

e

w-
ta-
ns

( mq
e1( mq

c5~2kCM1x! f q ,

kCM5e1
423 f 0

1/3

3~211 f 0
1/3!2f 0

2/3. ~20!

In Fig. 3kCM is plotted againstf 0 , for various values of the
cohesive interaction parametere. Clearly, if the initial pack-
ing fraction is low and/or the cohesive energy paramete
strongly negative,kCM is negativeand this implies that an
inhomogeneity in the total packing fraction will grow spo
taneously~depending on the precise value for(Uq;1/N!:
the system then develops regions with low and high c

FIG. 5. Morphology of anA8B8 block copolymer melt att
51500 according to the penalty model withkH8 510. The melt was
quenched att550 from x50 to x51. ~a! p, values range from
20.94–0.94~black to white!. ~b! f , values range from 0.96–1.0
~black to white!.
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822 56MAURITS, van VLIMMEREN, AND FRAAIJE
densed phases. IfkCM is weakly positive a phase transition
still possible, leading to nucleation phenomena in the bino
regime@see, e.g., Fig. 8~a!#. If we select the conditions suc
thatkCM@1 the cell model reduces to a penalty model w
non constant but positive penalty coefficient.

Notice that in the above analysis we have assumed
nVT ensemble, and thus the pressure is allowed to v
When the pressure is kept constant, the microphase se
tion dynamics in the cell model can be considerably differ
from the penalty or incompressible model. A precise analy
of the stability conditions in the cell model including pre
sure effects is quite involved and will be postponed to
future publication.

B. Numerical results

We performed a number of numerical simulations, us
the various excluded volume interaction models. To mak
comparison with previous simulation results@1#, we have
used the same linear mobility coefficient@which differs from
the approximation in Eq.~10!# JI52Mr I“m I1 J̃I , and
studied the microphase separation dynamics in anA8B8 co-
polymer melt. The initial system is always homogeneo
Numerically, after discretizing the dynamic equations on
grid @cf. Eq. ~10!#, we have the following Crank-Nicolson
equations for each componentI

u Ir
k112vDtzIr

k115u Ir
k 1~12v!DtzIr

k 1h Ir
k .

Here, h Ir
k is the noise which is distributed according to

fluctuation-dissipation theorem@8#. Notice that the noise is
applied at every time step.zr

k denotes the discretized diffu
sion part at time levelk and ~cubic! grid positionr

zr5(
a

(
q

da@Dau IDa# rqbm Iq .

FIG. 6. Time evolution of volume-averaged order parametew
as a function oft in an A8B8 block copolymer melt for the cel
model at different volume fractions. (A) f50.7 ~—! quenched at
t550, (B) f50.5 ~– – – – –! quenched att550, and (C)
f50.5 ~———! not quenched.
al

n
y.
ra-
t
is

a

g
a

.
a

Da is the discretized diffusion operator in grid directiona
and m Iq is evaluated at grid positionq. v is the Crank-
Nicolson parameter andDt is a scaled time step. The Crank
Nicolson equations are solved iteratively at every time s
using a steepest descent method. We define an average
sure of the order in the system by

w[
1

V E
V
~uA

21uB
2 !dr5

1

2V E
V
~ f 21p2!dr.

w captures the effects of a change in order due to microph
separation and/or total density fluctuations. In Fig. 4 we p

FIG. 7. @Illustration of simulation (A)#. Morphology of an
A8B8 copolymer melt att51500 according to the cell model. Th
interaction parameters are explained in the text. The melt
quenched att550 from x50 to x51. ~a! p, values range from
20.65–0.69~black to white!. ~b! f , values range from 0.66–0.7
~black to white!.
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FIG. 8. @Illustration of simulation (B)#. Morphology of anA8B8 copolymer melt att51500 according to the cell model. Interactio
parameters are explained in the text. The melt was quenched att550 fromx50 to x51. ~a! p, values range from20.62–0.62~black to
white!. ~b! f , values range from 0.0–0.66~black to white!. ~c! Isosurface representation ofUA1UB50, values range from20.61–1.54.
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-
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ted the time evolution ofw in a simulation using the incom
pressible model~all parameters as in@1#! and Helfand’s pen-
alty model (kH8 510). The phase separation was initiat
with a quench fromx50 to x51.0 at t550. Figure 4
clearly shows that the models have the same dynamic
formance ~the penalty model was followed over a long
period of time for stability tests!. Notice that in the incom-
pressible model, the numerical errors effectively allow de
sity fluctuations of the same order as in the penalty mode
the interfacial regions the packing fraction has a dip of a f
percent@illustrated in Figs. 5~a! and 5~b!#, which was absen
in the incompressible model simulations. The depth of
dip strongly depends on the compressibility parameter;
largerkH , the smaller the dip.
r-

-
In

e
e

More interesting effects are observed in simulations us
the cell model. In Fig. 6 the time evolution of the avera
order parameter is plotted for three different simulations.
the three casesbe IJ

0 n215220.0 initially, in simulationsA
and B the interactions are quenched tobeAB

0 n21

5beBA
0 n215218.57 and beAB

0 n215beBA
0 n215218.0,

respectively, att550. The initial volume fractions aref 0
50.7 (A) and f 050.5 ~B andC!. The quenched interaction
values correspond toxu0B50.5 effectively, as in the incom
pressible system. In simulationC the system is not
quenched.

Figure 6 clearly shows a fast increase of the order par
eter after the quench att550 for simulationsA andB; a
sign of microphase separation. In caseB the order paramete
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does not increase smoothly; the inflection points corresp
to gas bubble nucleation. The increase of the order param
in caseC is not due to microphase separation, but is a re
of gas bubble development in the binodal regim
„kCM50.13@see Eq.~20!# in both simulationsB andC…, due
to the excluded volume effects at low packing fraction.

Figures 7~a!–9~a! are illustrations of the different mor
phologies att51500 for the three simulations. Because t
system can not adapt its volume to pressure changes,
bubbles develop if the initial packing fraction is too lo
@Figs. 8~a! and 9~a!#. Figures 7~b! and 8~b! show the packing

FIG. 9. @Illustration of simulation (C)#. Morphology of an
A8B8 copolymer melt att51500 according to the cell model. In
teraction parameters are explained in the text. The melt was
quenched, the excluded volume effects cause gas bubble nucle
~a! p, values range from20.06–0.06~black to white!. ~b! f , values
range from 0.0–0.65~black to white!.
d
ter
lt

as

fraction at t51500 for the two simulations. In comparin
figures~a! and ~b! we see that the black regions in 7~b! and
8~b! indicate density dips at domain interfaces. The interfa
effects are much less in the cell model simulations than
the penalty model simulations. Notice that the effecti
kCM525.0 and is, hence, much higher in the cell mod
simulations than in the penalty model simulations. The ma
mum packing fraction is increased with respect to the init
packing fraction in simulationsB and C because of the
nucleation phenomena.

From Figs. 8~a!, 8~c!, and 10 we conclude that the mi
crophase separated domains have an orientationtowardsthe
gas-liquid interface, rather than an adjacent or parallel ori
tation. We will further investigate this orientation in futur
simulations.

IV. CONCLUSION

In this paper we have examined the effects of differe
compressibility models on numerical simulations of copo
mer melts using the dynamic mean-field density function
method. Our results clearly show that a cell model~a modi-
fication of the FOV model! can be used, which exhibits
physical excluded volume effects~density dips at domain
interfaces!. The usage of the cell model also causes g
bubble nucleation at low initial packing fractions innVT
simulations. This effect will not be present innpT simula-
tions, where the system will adapt its volume to pressu
changes. The resulting morphologies show intriguing str
tures, with lamellar phases oriented towards the gas-liq
interface. The interface effects are even more clear if
phenomenological penalty model is used, which is ma
ematically and numerically very simple and shows no g
liquid transitions.

ot
ion.

FIG. 10. Isosurface representation off50.6 att51500 in simu-
lation B. ~See Fig. 8 for parameters.! The gas bubbles are clearl
visible.



,
G

n

t.

.

n,

a

ac-

l-

, J.

s

d

L.

s

56 825MESOSCOPIC PHASE SEPARATION DYNAMICS OF . . .
@1# J. G. E. M. Fraaije, B. A. C. Van Vlimmeren, N. M. Maurits
M. Postma, O. A. Evers, C. Hoffmann, P. Altevogt, and
Goldbeck-Wood, J. Chem. Phys.106, 4260~1997!.

@2# M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys.65, 851
~1993!.

@3# P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys.49, 435
~1977!.

@4# O. T. Valls and J. E. Farrell, Phys. Rev. E47, R36 ~1993!.
@5# T. Kawakatsu, K. Kawasaki, M. Furusaka, H. Okabayashi, a

T. Kanaya, J. Chem. Phys.99, 8200~1993!.
@6# A. Shinozaki and Y. Oono, Phys. Rev. E48, 2622~1993!.
@7# B. Schmittmann and R. K. P. Zia, inPhase Transitions and

Critical Phenomena, edited by C. Domb and J. Lebowitz~Aca-
demic, London, 1994!.

@8# B. A. C. Van Vlimmeren and J. G. E. M. Fraaije, Compu
Phys. Commun.99, 21 ~1996!.

@9# N. M. Maurits, P. Altevogt, O. A. Evers, and J. G. E. M
Fraaije, Comp. Polym. Sci.6, 1 ~1996!.

@10# N. M. Maurits and J. G. E. M. Fraaije, J. Chem. Phys.106,
6730 ~1997!.

@11# B. A. C. Van Vlimmeren, M. Postma, P. Huetz, A. Brisso
and J. G. E. M. Fraaije, Phys. Rev. E54, 5836~1996!.

@12# P. J. Flory, R. A. Orwoll, and A. Vrij, J. Am. Chem. Soc.86,
3507 ~1964!.

@13# A. T. DiBenedetto, J. Polym. Sci. Part A1, 3459~1963!.
@14# V. S. Nanda and R. Simha, J. Phys. Chem.68, 3158~1964!.
@15# V. S. Nanda, R. Simha, and T. Somcynsky, J. Polym. Sci. P

C 12, 277 ~1966!.
@16# R. Simha and T. Somcynsky, Macromolecules2, 342 ~1969!.
@17# B. Hartmann and M. A. Hague, J. Appl. Polym. Sci.30, 1553

~1985!.
@18# B. Hartmann and M. A. Hague, J. Appl. Phys.58, 2831~1985!.
@19# I. C. Sanchez and R. H. Lacombe, J. Phys. Chem.80, 2352

~1976!.
@20# I. C. Sanchez and A. C. Balazs, Macromolecules22, 2325

~1989!.
.

d

rt

@21# C. G. Panayiotou, Macromolecules20, 861 ~1987!.
@22# P. Zoller, J. Polym. Sci. Polym. Phys. Ed.18, 157 ~1980!.
@23# G. T. Dee and D. J. Walsh, Macromolecules21, 811 ~1988!.
@24# R. Dickman and C. K. Hall, J. Chem. Phys.85, 4108~1986!.
@25# P. J. Flory, R. A. Orwoll, and A. Vrij, J. Am. Chem. Soc.86,

3515 ~1964!.
@26# P. J. Flory, J. Am. Chem. Soc.87, 1833~1965!.
@27# B. E. Eichinger and P. J. Flory, Trans. Faraday Soc.64, 2035

~1968!.
@28# S. Janssen, D. Schwahn, K. Mortensen, and T. Springer, M

romolecules26, 5587~1993!.
@29# Jean Pierre Hansen and Ian R. McDonald,Theory of Simple

Liquids ~Academic, London, 1986!.
@30# K. S. Schweizer and J. G. Curro, Phys. Rev. Lett.60, 809

~1988!.
@31# K. G. Honnell, J. G. Curro, and K. S. Schweizer, Macromo

ecules23, 3496~1990!.
@32# James P. Donley, John G. Curro, and John D. McCoy

Chem. Phys.101, 3205~1994!.
@33# D. Porter,Group Interaction Modelling of Polymer Propertie

~Dekker, New York, 1995!.
@34# D. W. Krevelen,Properties of Polymers, Their Correlation

with Chemical Structure; Their Numerical Estimation an
Prediction from Additive Group Contribution, 3rd ed.
~Elsevier, Amsterdam, 1990!.

@35# R. S. Spencer and G. D. Gilmore, J. Appl. Phys.20, 502
~1949!.

@36# E. Helfand, J. Chem. Phys.62, 999 ~1975!.
@37# D. T. Wu, G. H. Fredrickson, J.-P. Carton, A. Ajdari, and

Leibler, J. Polym. Sci. Part B33, 2373~1995!.
@38# P. G. de Gennes,Scaling Concepts in Polymer Physics~Cor-

nell University, Ithaca, 1979!.
@39# M. Doi and S. F. Edwards,The Theory of Polymer Dynamic

~Clarendon, Oxford, 1986!.
@40# P. G. de Gennes, J. Chem. Phys.72, 4756~1980!.


